Data Selection for Compact Adapted SMT Models

نویسندگان

  • Shachar Mirkin
  • Laurent Besacier
چکیده

Data selection is a common technique for adapting statistical translation models for a specific domain, which has been shown to both improve translation quality and to reduce model size. Selection relies on some in-domain data, of the same domain of the texts expected to be translated. Selecting the sentence-pairs that are most similar to the in-domain data from a pool of parallel texts has been shown to be effective; yet, this approach holds the risk of resulting in a limited coverage, when necessary n-grams that do appear in the pool are less similar to indomain data that is available in advance. Some methods select additional data based on the actual text that needs to be translated. While useful, this is not always a practical scenario. In this work we describe an extensive exploration of data selection techniques over Arabic to French datasets, and propose methods to address both similarity and coverage considerations while maintaining a limited model size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NTT - NAIST SMT Systems for IWSLT 2013

This paper presents NTT-NAIST SMT systems for EnglishGerman and German-English MT tasks of the IWSLT 2013 evaluation campaign. The systems are based on generalized minimum Bayes risk system combination of three SMT systems: forest-to-string, hierarchical phrase-based, phrasebased with pre-ordering. Individual SMT systems include data selection for domain adaptation, rescoring using recurrent ne...

متن کامل

Evaluating of the efficiency of AMMI and BLUP models and their integration for identifying high-yielding durum wheat (Triticum turgidum L. var. durum) genotypes adapted to warm rainfed regions of Iran

The aim of this study was to evaluate the efficiency of yield stability analysis models and to assess genotype × environment interaction effect on grain yield of 20 durum wheat genotypes for identifying high yielding and adapted genotypes by BLU and AMMI models using experimental data of four cropping cycles (2009-2013) in five filed stations in warm rainfed regions of Iran. The results of Like...

متن کامل

Selection-Based Language Model for Domain Adaptation using Topic Modeling

This paper introduces a selection-based LM using topic modeling for the purpose of domain adaptation which is often required in Statistical Machine Translation. The performance of this selection-based LM slightly outperforms the state-of-theart Moore-Lewis LM by 1.0% for EN-ES and 0.7% for ES-EN in terms of BLEU. The performance gain in terms of perplexity was 8% over the Moore-Lewis LM and 17%...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

A Systematic Comparison of Data Selection Criteria for SMT Domain Adaptation

Data selection has shown significant improvements in effective use of training data by extracting sentences from large general-domain corpora to adapt statistical machine translation (SMT) systems to in-domain data. This paper performs an in-depth analysis of three different sentence selection techniques. The first one is cosine tf-idf, which comes from the realm of information retrieval (IR). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014